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Abstract 

 

This report describes the laboratory directed research and development work to model relevant 

areas of the brain that associate multi-modal information for long-term storage for the purpose of 

creating a more effective, and more automated, association mechanism to support rapid decision 

making. Using the biology and functionality of the hippocampus as an analogy or inspiration, we 

have developed an artificial neural network architecture to associate k-tuples (paired associates) 

of multimodal input records. The architecture is composed of coupled unimodal self-organizing 

neural modules that learn generalizations of unimodal components of the input record. Cross 

modal associations, stored as a higher-order tensor, are learned incrementally as these 

generalizations form. Graph algorithms are then applied to the tensor to extract multi-modal 

association networks formed during learning. Doing so yields a novel approach to data mining 

for knowledge discovery. This report describes the neurobiological inspiration, architecture, and 

operational characteristics of our model, and also provides a real world terrorist network example 

to illustrate the model‟s functionality. 
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1.  INTRODUCTION 
 

Currently, data analysts are hampered by the need to sift through very large amounts of 

constantly changing data in order to forage for “nuggets” of information that may support or 

discredit an existing hypothesis. The collection and assessment of national security related 

information often involves an arduous process of “connecting the dots” within very large data 

sets. This process has proven to be extremely difficult, especially when analysts need to piece 

together information cues associated with various individuals, groups, events, and places, along 

with such items as communication and transportation logs. The ability to more effectively 

perceive connections among events, locations, and people could greatly aid in the process of 

knowledge discovery.   

 

Recent data mining and fusion tools have become much more effective in uncovering evidence 

of potential threats by sifting through Internet traffic, financial and communications records, as 

well as transcripts of audio streams for patterns of interest.  While this type of capability is useful 

in understanding general patterns of behavior, it is typically limited to one type of information 

domain (e.g., textual) and must rely on a large number of statistically related links to uncover 

relevant patterns.  In addition, systems that utilize video sources to analyze video surveillance 

information to classify video footage are typically achieved without the ability to infer common 

relationships among related video events or actors.  

 

Regardless of the information source, a significant problem faced by existing approaches is the 

immense difficulty in finding an information signal that is indicative of specific adversary 

behaviors and associating it with other meaningful signals in a vast sea of noise. That is, current 

statistical database approaches, by themselves, are generally ill equipped to detect meaningful 

associations across multiple information sources. Consequently, existing systems are not 

considered equipped to actively assist in the marshaling and assessment of information.  

Developing a system that assists analysts with knowledge discovery by helping to uncover 

associations, as well as help marshal evidence by assembling individual pieces of evidence into a 

single context, would be a great advancement to the analyst community. This is particularly true 

with the increasing need to more rapidly detect associations across various information modes 

for threat identification and determination in real-time, security-related contexts—for example, 

in situations involving time critical targets of national importance where rapid assessments must 

be made as to the type and degree of threat that may or may not exist. 

 

In response to this need, the focus of the laboratory directed research and development (LDRD) 

effort sought to advance the field of knowledge discovery by exploring both traditional statistics-

based approaches as well as a neurologically-based, or “neuromorphic” approach to auto-

associate information more similar to how a mammalian brain processes and associates multi-

sourced information. This process of collecting and storing information naturally occurs in an 

awake mammalian brain.   

 

While a system that can auto-associate relevant, multi-modal information as described above is 

still in the future, we assert that an effort to replicate the associative processes of the brain, to an 

appropriate degree, has the promise to greatly advance the process of knowledge discovery.  This 

process would more effectively generate threat determinations in support of rapid decision-
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making in security-related contexts by filtering through a large corpus of multi-source/multi-

mode information to uncover relevant associations. 

 

The focus of this LDRD effort, termed the Augmented Cognition for Rapid Decision Making 

(ACORD) capability, is to explore how to model relevant neurological processes in the brain that 

naturally associates information from different modalities for long-term storage as a memory 

episode.  Recent advances in knowledge pertaining to the processes underlying associative 

memory have made it possible to model these processes at a level of fidelity that is applicable to 

knowledge discovery. This discussion will emphasize our neuromorphic approach underlying the 

ACORD capability.  

 

1.1 Neurological underpinnings of the ACORD effort 
 

The brain receives a variety of sensory input signals such as visual, auditory, and olfactory. 

Although each input stream does receive its share of focused individual processing, additional 

insight comes from the converged processing of all input modalities. Such an occurrence takes 

place within the Medial Temporal Lobe (MTL) region of the brain, and more specifically within 

the hippocampus. Beyond receiving a convergence of sensory inputs, the hippocampus is 

essentially involved in episodic memory formation. Rather than simply being a mechanism for 

storing information, episodic memory associates information such as the spatial and temporal 

contexts of an event.  

 

 



9 

 
Figure 1  Hippocampus and associated structures 

 

 

The episodic memory capability of the brain enables us to encode personal experiences as 

converged neural activations across cortical areas using diverse sensory modalities. In doing so, 

we are able to remember a large number of events including detailed sequences of events 

comprising experience as well as the temporal and spatial context of each event in the sequence 

[1]. One brain area, the hippocampus, is critically involved in remembering the spatial and 

temporal context of an event.  The location of the hippocampus within the human brain may be 

seen in Fig. 1. The MTL, where the hippocampus is located, is the recipient of inputs from 

widespread areas of the cortex and supports the ability to bind together cortical representations 

[1]. A key component of episodic memory is association of diverse types of information [2].  

This capability allows humans to relate knowledge pertaining to elements of an event such as 

who, what, when, and where.  In this paper we present an artificial neural network architecture 

that learns these types of association inspired by the hippocampus. We start with an overview of 

hippocampus biology; then explain the design of our neural network architecture; follow this 

with sample experimental results to motivate its use; then present a real world terrorist network 

scenario, and conclude with a discussion of the significance of our architecture and directions for 

future research. 
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Cortical inputs to MTL arrive from various sensory modalities, with different emphases 

depending upon the mammalian species. For instance, rats receive a significant olfactory 

influence whereas bats receive a strong auditory influence [3]. Nevertheless, across species, most 

of the neocortical inputs to the perirhinal cortex come from cortical areas which process 

unimodal sensory information about qualities of objects, called the “what” stream, and most of 

the neocortical inputs to the parahippocampal cortex come from cortical areas which process 

polymodal spatial information, called the “where” stream [3][1]. There are some connections 

between the two streams, however overall processing in each stream remains largely segregated 

until they converge within the hippocampus [5].   

 

Extensive neuroscience research typically describes the anatomy of the hippocampus as 

consisting of a loop beginning with the dentate gyrus (DG), proceeding to CA3, followed by 

CA1 and propagating through the subiculum out to the input streams [6]. The hippocampus 

receives its inputs from the entorhinal cortex (EC) and passes its outputs back to the EC.  The EC 

receives inputs from both perirhinal (dorsal) and parahippocampal (ventral) cortices. The 

perirhinal cortex is involved in object recognition, and the parahippocampal cortex is involved in 

recognizing scenes. The sub regions of the hippocampus and surrounding cortex, specifically 

related to the motivation for our neural model, will be addressed individually as follows. 

 

The DG receives the conjoined multimodal sensory signals from EC. Anatomically, DG consists 

of a large number of neurons with a relatively sparse neural activation code at any given instant.  

Effectively, this behavior suggests that the DG creates non-overlapping sparse codes for unique 

events [7]. In this case an event consists of simultaneous neural activation leading into (afferent) 

to the hippocampus (DG in this case) within a short span of time.  The sparse DG outputs serve 

as the input for CA3. 

 

The CA3 region of the hippocampus consists of extensive recurrent connections. The CA3 

region also receives direct input from the EC. The sparse encoding of the DG allows the CA3 to 

uniquely encode EC activation patterns as specific events within an episode as well as facilitating 

later semantic encoding. These neural processes enable CA3 to perform auto-association.  

Anatomically, the output of CA3 proceeds to CA1 and subiculum as the major output regions of 

hippocampus [8]. While the exact functionality of subiculum is largely unknown, CA1 

functionality is typically identified as learning relational information for temporal sequences and 

connecting episodic encodings from CA3 with the original EC sensory activations. We have used 

some of these functional properties of the hippocampus as the basis for an artificial neural 

network architecture for learning and forming associations. This process is described below.  
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2.  COMPUTATIONAL ARCHITECTURE 
 

In general, an association is a relationship between entities where they share some degree of 

commonality. For example, an individual is associated with their name, or two individuals may 

be associated with a common workplace. All entities are trivially related to themselves. The 

simplest non-trivial association is between two entities, but in general k individual entities may 

require association. The question arises as to how relationships are learned and encoded as 

memory?   

 

Numerous domain specific rules or heuristics may be utilized to discover commonality among 

entities based upon criteria such as distance metrics or shared feature counts. In contrast, our 

architecture inspired by hippocampus builds relational codes by associating multiple modal 

specific entities with their mutual context, analogous to the dorsal and ventral partitioning in EC 

sensory input signals.  In its simplest form, our approach associates what and where information 

based upon their shared frame of reference. For example, multiple people may be associated with 

the house in which they live.     

 

In order to create associations, the network must first create representations (or neural codes) of 

the individual unimodal sensory perceptions of the entities. Prior to entering hippocampus, 

sensory signals pass through numerous layers of cortex. Throughout these layers a distributed 

representation for entities is gradually constructed. Eventually, within the hippocampus, the DG 

is believed to create unique sparse encodings for unique multimodal sensory perceptions 

allowing it to either learn new associations or recall existing ones. Through the use of self-

organizing neural networks, our architecture performs similar operations. It can detect entities 

that it has previously experienced and therefore reinforce existing associations, or detect novel 

entities necessitating a new association encoding.  

 

 Our architecture, shown in Fig. 2, addresses this capability by using fuzzy-Adaptive Resonance 

Theory (Fuzzy ART) artificial neural network modules. Developed by Carpenter and Grossberg, 

the ART family of neural networks are online, unsupervised (self organizing) neural networks 

which are excellent at rapid category formation [9]. The Fuzzy-ART version used in our 

architecture operates upon real valued inputs. Given a vector of real valued numbers as input, 

Fuzzy ART performs pattern categorization through winner-take-all competition, yielding a 

unique category code as output. A single parameter (vigilance) regulates how similar enough 

inputs must be in order to group within the same category. A vigilance parameter value of unity 

requires the inputs in the same group to be identical. Lowering the vigilance parameter towards 

zero allows for generalization such that similar, but not exactly identical, inputs may be grouped 

together. If no existing category is sufficiently close to capture an input, then Fuzzy ART 

automatically creates a new category code.  In the neurophysiology, DG creates nearly unique 

encoding for novel inputs. Fuzzy-ART creates and maintains representative categories for inputs.  

Repeated presentation of previous inputs activates the same categorical representation whereas 

novel inputs are represented by new category encodings. Categorical activations are the basis for 

learning associations in our architecture.   
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Figure 2  Associated ART Architecture 

 

 
A version of the architecture with four input modalities. The Media Sorter module accumulates a frame of 

informational entities that are presented to the modal channels represented in this diagram as boxes with 

ART labels. The Database module is a reference to the archiving of the learned relationships plus all ART 

based learned parameters.  The Tensor is represented as a matrix showing learned relationships as black 

dots at the intersections of rows and columns indicating category nodes active in the current frame. 

 

The DG encodings in the hippocampus propagate to the CA3 region that is believed to be heavily 

composed of recurrent connections supporting the formation of associations.  In a sense, the CA3 

acts like an association “mapfield” where the simultaneous arrival of signals at CA3 neurons 

from DG neurons representing mixed modal entities strengthens their ability to fire in the future.  

Similarly, in our architecture, the activations of category codes from k unimodal Fuzzy ART 

modules are connected in a fully connected mapfield containing synaptic weights encoding 

associations among k-tuples of inputs.  This association map has the structure of a k
th

 rank tensor 

with variable dimensions and will be henceforth referred to as the “tensor mapfield.”  

  

Existing ART based associative neural network architectures (ARTMAP, LAPART [10]) link 

two ART class modules using a mapfield that effectively associate category outputs from the two 

ARTs.  This class of architecture connects an ART module to each axis of a matrix of synaptic 

weights-- the intersecting grid lines encode a connection between the two ART modules [11].  

These models are usually used for supervised learning or function approximation applications 
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that require unidirectional many-to-one associations from the first ART to the second (see Figure 

1 in [11]).        

 

Our architecture consists of an arbitrary number of unimodal Fuzzy ART modules symmetrically 

connected through an association tensor mapfield to encode arbitrary associations between 

unimodal entities (Fig. 2). As with ARTMAP & LAPART, the output category layer of each 

unimodal module is connected to an axis of the tensor. Unlike these architectures, the category 

layers of each module are buffered and connected to mirror axis of the tensor, thus allowing 

associations between entities of the same modality. All tensor elements (synapses) are initialized 

to zero prior to learning.  

 

During training, the system receives a sequence of data records that can contain any mixture of 

modal data components. Upon entry into the system, the components of the record are placed in 

a queue from which each unimodal component is directed to the corresponding unimodal ART 

module sorted by its modal type. This module performs its categorization, activating the 

corresponding output node and its gridline in the tensor mapfield.  For each grid intersection in 

the tensor where there exists at least two current activations, the tensor element (synapse) is 

strengthened. In the current version of this architecture, the synapse strength is immediately set 

to unity. After learning has occurred, the active node is mirrored and buffered for the remainder 

of the processing of the record, and the next modal data component if drawn from the queue and 

directed to the appropriate unimodal module. Through the processing of the sequence of data 

records, the tensor mapfield learns symmetric binary associations. 

 

Fuzzy ART has excellent learning properties for this type of application. Configured with its 

choice parameter set near zero and the use of complement encoding on the input vector [9], this 

module exhibits single pass learning. That is, given a finite set of training patterns, the number of 

learned categories and all internal synaptic weights converges to their final values in one 

presentation epoch. A presentation epoch is the process of inputting each and every member of 

the training set to the module once and only once. During the second presentation of the training 

set, it is possible that individual patterns will change category membership, but this will cease in 

subsequent presentations.  Scaling studies have shown that for higher dimensional input patterns, 

membership change is unlikely during the second presentation epoch. As mentioned above, the 

vigilance parameter for Fuzzy ART determines the ultimate number of categories learned during 

the first presentation.  When this parameter is unity, the number of categories equals the number 

of unique training patterns, thus memorizing the training set. When this parameter is near zero, 

the number of categories will approach one, thus over generalizing over the training set. The 

choice of this parameter will strongly affect the dimensionality of the tensor mapfield. 
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3.  EXPERIMENTS 
 

3.1 Sample Association Study 
 

As an introduction to the associative capability of our Associative-ART architecture we have 

constructed a simple image association experiment with 20 unique inputs and 22 associations 

amongst the inputs. The parametric configuration we used for each Fuzzy-ART module is β set 

to 1 (fast learning), a choice parameter α of 0.01, and a vigilance of 0.99.  As the base case, we 

have set k equal to two so that the associations are pairs. While ART is capable of processing 

any vectorized inputs, for this experiment we have presented our architecture with images of 

uniformly sized circled letters and numbers as shown in Fig. 3. Each row in the figure portrays 

an associative pairing and the column depicts the individual input, which was presented to the 

architecture. (A listing of the publications resulting from this work is listed in Appendix A).  
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Figure 3  Sample Association Study Inputs 

 

 

 

 Although this is a generic, fictitious example, it can be conceptually compared with the type of 

task presented to data analysts. These analysts are tasked with processing large quantities of 

information and forming associations for a variety of reasons including but not limited to 

knowledge discovery, discovering groups and individual of interest, and analyzing criminal or 

terrorist networks. Thus, for this sample example it may be understood that numbers are 
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representative of people and letters representative of locations respectively. As such, people may 

be associated with other people or locations such as businesses and addresses. Likewise, 

locations may be associated with people for the same reasons just stated, or they may also be 

associated with other locations. Locations may be associated with other locations for a variety of 

reasons such as representing concepts like a business partnerships or geographic hierarchies such 

as cities within a subsuming state or country.     

 

3.2 Sample Association Results 
 

Upon processing the inputs shown in Fig. 3, the tensor mapfield of our architecture has encoded 

all of the symmetric binary associations between inputs. For this sample study, the mapfield 

encodes the associations between pairs of images. The tensor mapfield may be queried in order 

to generate an equivalent, but often more visually intuitive, association graph.  The graph of this 

example is illustrated in Fig. 4. As portrayed by this figure, although simple pairings were 

presented to the architecture, the net result is a more sophisticated network which may aid an 

analyst in comprehending the structure of criminal networks or identify connections previously 

unperceived. For instance, as may be seen in Fig. 4 the resultant association network is disjoint 

and from the 22 input pairings 3 sub networks emerge. The topological layout shown is arbitrary, 

but the connectivity allows for potential knowledge discovery such as by means of transitive 

association path analysis. As an example, individuals „1‟ and „7‟ were never presented together 

in a single instance, but by traversing the association graph they may be connected through a 

third party (individual „3‟) and two locations („a‟ and „m‟).   

 

 
Figure 4  Sample Association Study Association Graph 
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Degree centrality is a quantitative network analysis technique to assess the relative significance 

of a node within the network. Degree centrality is computed as the summation of edges incident 

with a node normalized by the number of nodes within the network [12]. The degree centralities 

for all of the nodes in this experiment are listed in Table 1 in decreasing order. This analytical 

technique quantitatively captures than individual „2‟ is the most connected entity within the 

association network, and conversely several other nodes such as individual „1‟ only have a single 

association. Actual national security scenarios are typically much more complex yielding much 

more ambiguous association networks and requiring more sophisticated analysis techniques 

beyond the scope of this paper. However, as follows is a second scenario illustrating the 

associative capabilities of our architecture. 

 

3.3 Real World Terrorist Network Example  
 

Following terrorist attacks on U.S. embassies in 1998, an open-source examination was 

conducted to investigate Osama bin Laden, al Qaeda, and allied terrorist organizations [13]. We 

leveraged portions of this examination to serve as a real world terrorist network example to 

process with our architecture. While the techniques portrayed in the preceding simple artificial 

example are once again employed, this example additionally demonstrates our architecture‟s 

ability to operate upon a much larger scenario which embodies traits of a real terrorist network as 

opposed to artificial network types which may or may not be realistic.    

 

The parametric configuration we used for each Fuzzy-ART module is β set to 1 (fast learning), a 

choice parameter α of 0.01, and a vigilance of 0.99. As a more sophisticated example, rather than 

constraining the inputs to be simple pairs the k-tuple inputs varied in size from 2 to 4 entities 

being presented to the architecture simultaneously.  Overall, this example was comprised of 179 

tuples constructed from 189 unique inputs.  

   

3.4 Real World Terrorist Network Results 
 

Once again the tensor mapfield yielded from processing the input tuples encodes the binary 

associations between inputs. As before, the tensor mapfield may be queried to generate an 

association graph.  The association graph of this real world example is captured in Fig. 5.  Just as 

the input tuples are more complicated both in terms of quantity and length in this real world 

example, the resulting association graph is much richer. In this case, the graph shown is nearly 

fully connected, but that is a consequence of the highly focused nature of the input data, whereas 

in a more general scenario it is also possible that an analyst may receive a barrage of unrelated 

information. Despite the indecipherable appearance of this association graph, it provides a means 

for an analyst to investigate individual associations and facilitates a larger overall understanding 

of the mass quantity of information. For example, Fig. 6 illustrates a subset of the overall 

scenario focusing upon Osama bin Laden and highlighting all of the entities the associated data 

linked to him.     
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Figure 5  Real World Terrorist Network Subgraph 
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4.  CONCLUSIONS AND FUTURE WORK 
 

In this paper we have presented an artificial neural network computational architecture with 

functionality inspired by the neural processes of hippocampus. Specifically, this architecture was 

based upon the DG and CA3 regions of hippocampus in order to learn associations among k-

tuples of entities.  It is a general architecture, as opposed to a domain specific solution. In the 

sense that it can handle any sort of input as long as the input can be represented as a numeric 

vector. Developing a general architecture enables it to be flexible enough so that it can be 

applied to the national security domain where it is a common practice to form association 

networks.  

In this paper we have demonstrated the architecture first on a simple generic problem which 

shows the architecture‟s potential for representing non-explicit association networks. 

Additionally, we have demonstrated the architecture‟s ability to process data from a real world 

terrorist network and construct the resulting associations. We have shown degree centrality as 

one quantitative network assessment technique, however constructing association networks such 

as these to potentially aid an analyst by allowing for further more sophisticated analysis such as 

transitivity, centrality, clustering, connectivity, and other network metrics. Additionally, in 

regards to data mining, our approach provides a means of representation and structured 

presentation. 

 

Future development of this architecture may include additional processing within the association 

field. Rather than simply recording a binary association value, additional metrics such as a 

frequency count, such as is used in Boosted ARTMAP [14], or a recency value may provide 

interesting enhancements. Incorporating a frequency count is one possibility to identify strength 

of association such that pairings repeatedly presented together are more strongly associated than 

items only presented once. Furthermore, the ability to represent non-symmetric associations 

would allow for directionality in yielded association networks. In our described architecture, 

presentation order is irrelevant, but if instead order matters a temporal marker could be utilized 

to assess how recently an association was formed. From this approach, various further processing 

could be incorporated such as the decay of associations over time. Another potential 

modification would be to experiment with incorporating a supervised training mode. Presently 

the architecture is an unsupervised online learning neural network trained fully online. However, 

if meaningful insights are known about the specific problem domain performance improvements 

may be possible by operating in a supervised learning mode. Depending upon the particular 

application, architecture modifications such as these provide great potential for enhanced further 

processing, as well as addressing episodic or sequential data.  

 

Together, these advancements are intended to provide the national security community with a 

next-generation knowledge discovery system that associates relevant information across various 

source modalities. As with many efforts, our goal is to enable analysts to more effectively, and 

more timely, connect the dots to increase the probability of detecting 9/11-type of events before 

they are carried out. Not effectively connecting the dots has been seen as a failure of pre-9/11 

analysis [15]. Our approach to this effort is to better understand and model the pre-conscious, 

associative mechanisms of the mammalian brain, albeit to a much simpler degree, in support of 

rapid decision-making for security-related contexts. While our approach may be considered 

unconventional compared to most efforts, we believe replicating specific aspects of the brain has 
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the potential to ultimately produce advancements in knowledge discovery that cannot be 

achieved through current means. We believe the neuromorphic advancements, along with 

advancements in more conventional, statistically based data filtering have already produced 

promising results. Ultimately, an appropriate mixture of neuromorphic and statistically based 

approaches should, in effect, shore up weaknesses in each approach to produce a knowledge 

discovery system that can more effectively associate relevant information.  

 

. 
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Table 1 Degree Centrality Measures for Sample Association Experiment 
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